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where fk-J( .) k a monotonic function in the interval 10, 2n] and inverse of jh. (r) 

in (6.6) ; it can be determined by using curves in Fig. 5. Having determined by formu- 
las (6.8) the quantities ?’ and TJ for the specified a, we can calculated modes of 

time-optimum operation by formulas (6.1) - (6.3) and (2.3). The time-optimum ope- 

ration mode (6. l), i. e. the solution of problem (1) which corresponds to r, is close 

with respect to the functional to the simpler mode (6.2) with three constant velocity 

sections, which corresponds to time T,. 
The maximum relative errors with respect to the functional, resulting from the substi- 

tution of the mode with three sections for the optimum one, does not exceed 1 Aa / 
a 1 < 1.10/;1 in the case of problem (1) and 1 AZ' / T 1 < 1.2% for problem (2) for 

any a and 1. 
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A method due to Poincare’ is used to study the critical cases in essentially non- 

linear autonomous systems with one degree of freedom, and the situations lead- 

ing to the splitting of the trajectories. The first Liapunov method is used to study 
the problems of stability of the steady modes. A selfrotating, almost conservative 
system is considered as an example. Previous papers concerned with the analysis 

of the motions near the generating family of periodic or rotational motions ofan 
unperturbed system dealt, as a rule, with relatively simple cases in which the equa- 
tions of the parameters of the family defining the steady mode admit, in the first 
approximation, simple real roots /1 - 6/. Subtler and more complex cases in 

which the roots are multiple, or when some of the equations of the defining sys- 
tem are satisfied identically, were given much less attention /l, 7 - 11/. 

1. Statement of tha problcrm. We consider a wide class of autonomous 

systems with one degree of freedom and slowly varying parameters of the form 
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q’ = Q (q, P, 5, 4, p’ = P (q, P, x, 4, x0 = df (4, p, x, E) (1.1) 

Here p and p are generalized coordinates, z is the vector of the parameters of the 

system and E 6% [O, aa] is a small nonnegative parameter. The functions Q, P and 
X are assumed to be sufficiently smooth in a certain relevant domain of variation of 

their arguments, and to satisfy the necessary conditions of periodicity with respect to the 

rotating variables Q or p. Finally, t > t, denotes time, the initial conditions are not 

given. 

If we assume the existence of a complete family of periodic or rotational solutions 

at E =O , the system (1.1) can be reduced to its general standard. form with a rotating 

phase 
(1.2) 

Here u is a quasiconstant vector, CO (a) is the frequency of oscillations or rotations and 

00 > o1 > o > oa > 0, The tight-hand sides are periodic in phase 9 wim a con- 

stant period of 2rr and are sufficiently smooth functions of their arguments for 1 II, 1 < 
00 and a E [a,, a,1 with max 1 Au I-+ 0 as E + 0. 

Since we shall construct the solution in the form of series, we shall simplify the mat- 

ters by assum~g that the right-hand sides are analytic. This assumption is not, in gene- 
ral, obligatory as an exact solution can be constructed by consecutive approximations in 
whole or fractional powers of the parameter a without making any assumptions of ana- 

lyticity /l/. We note that the smoothness requirement in the process of constructing a 

scheme of consecutive approximation must be strengthened in appropriate manner when 

dealing with the critical cases. The meaning of this remark is made clear in the con- 

structions given in Sects. 2 and 3. 
A direct construction of a solution of the system (1.2) introducing the perturbed fre- 

quency in the sequence of increasing secular terms /l, 2/, leads to very cumbersome 

expressions. A significant simplification is achieved by preliminary construction of a 

periodic phase trajectory a (9, E), after which the required solution is obtained as a 

function of time using the method of quadratures ,021. 

The periodic phase trajectory is described by the following standard system : 
da 

-_=E 
f (4 -44 4 

W 0 (a) + EF (a, ‘4, E) (1.3) 

Since in the region under consideration we have o > oO > 0, we find that for a suf- 

ficiently small e > 0 the following one-to-one correspondence exists between I# and 

I? : 6 
t -t&+== 

s 
[a (a ($‘, e)) + EF (a (46 E)Y ‘if, &)I-’ d” (1.4) 

0 

If a &-periodic solution of (1.3) has been constructed, then the formula (1.4) can be 
used to find the required T (&)-periodic solution of the initial system (1.2), of the form 

/12/ 
*=& (t--o+r)+e~(~(t--of-z), a), ~=wm3t (1.5) 

T = T (e) = i 10 (a ($3 E)) + EF (a (9, 4, 9, W@ (1. ‘3) 
0 

where Y is a T-periodic function of time. 
The problems of the Liapunov stability of the periodic solutions of the system (1.2) 
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can be solved by investigating the stability of the periodic phase trajectories of the sys- 

tem (1.3) with the help of the Andronov-Vitt theorem /l/. Namely, if all characteris- 

tic indices of the corresponding system with periodic coefficients in the variations 

f(a, $, 4 
o (a) + EF (a, 9, e) I 6a 

’ a = a (0, c) (1.7) 

have negative real parts, then the solution of the initial system (1.2) is orbitally stable. 

Let us now construct a periodic solution of the system (1.3). First we briefly explain 

the idea of the Poincare method of small parameter. This method of constructing asolu- 

tion is based on choosing the initial condition for the quasiconstant vector a in a special 

manner, namely the quantity a, and the small increment u which vanishes when F = 0 
are chosen such that the conditions 

a (I#~, ao, u, F) = a, + v = a ($0 + 2n7 a,, u3 8) (1.8) 

hold. The Eqs. (1.8) represent the necessary and sufficient conditions for the periodicity 
of the solution a (+:, oo, v, E) of (1.3). 

We note that the initial value ‘11-),, can be chosen arbitrarily. Then the expression for 

the function sought 

a (9, 00, v, e) = i 5 aij (9, a0) ciJ, a00 ($, a0) -= a0 most (1.9) 
i=() j=O 

is substituted into (1.3). Taking (1.8) into account and equating the coefficients of like 

powers of civj , we use the Weierstrass theorem on implicit functions /13/ to obtain an 

expression for the unknown small increment u = L: (a). Since N is a vector, the expres- 

sion (1.9) means that m 
2 &i” .: i , ; “ij ,.,’ Qt. . 0): 

j=o A==0 &,=o 

where n denotes the dimension of the vector a. As a result, the expressions for 1; (E) 

and the solution (1.9) are obtained in the form of series in whole or fractional powers 

of the parameter E. 
The theoretical justification of the scheme of constructing the solution is not considered 

here. 

2. Baalc results. It was shown in /4/ that when 

&det (v) Iao*+o (2.1) 

where a,,* is a real root of the vector equation 
2r: 

1 * 
RI (a(J) G - 

0 ((LO) I 
f (ao, *, 0) d$ = 0 

0 

(2.2) 

then a periodic solution of the system (1.3) ixists and is unique. The solution can be 
constructed in the form of series, or by means of successive approximations in wholepow- 

ers of e. The sufficient condition of stability is expressed by the requirement that the 
roots of the characterisitc equation of the first approximation 

det (E (a&, / da,)* - 13L) = 0 (2.3) 
have negative real parts. 

The casesinwhich det (ii&r / au,)* = 0, we shall call singular or critical ones. 
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A complete analysis of these cases is extremely difficult, especialiywhen n > 1. 
1”. Assume a to be a scalar and let a O* be a double real root of (2.2), belonging 

to the region under consideration. In this case the required periodic solution is given by 
the series 

a($, Ua, e) = as + i 6i% ($9 &)7 S=l/, (2.41 
i=l 

Here Ui are the unknown periodic coefficients which can be found by substituting (2.4) 

into (1.3) and equating the coefficients of like powers of 6. This procedure leads to a 

linked sequence of explicitly integrable equations. In particular, we have 

a, = const; a2 = a20 + (401 $ (f)o w7 u2o = const. (2.5) 
0 

Here the constants of integration a,, uzo, . . . can be found from the conditions of peri- 

odicity of the higher coefficients beginning from ad. For a, we have the equation 

2 
% (2.6) 

0 
Here and henceforth the expressions of the type (fo) mean that the arguments a = zo* 

and E = 0. Equation (2.6) admits real roots when L (#RI/ duo’)* ‘2 0 Let us 

assume that we have the strict inequality. Then the following relations for determining 
the unknown constants uio (i > 2) will b ecome linear and will contain the multiply- 

ing factor a*, (d2R1 / daoz) *. In particular, for i = 2 we have 

(F)o(f)o~- ($),(g- (fg,gg+ 

b%,,&}~~~ c (4) = (& \ (do 0 
0 

The expressions for the higher coefficients are very cumbersome, therefore we do not 
give them here. The subsequent analysis shows that the phase trajectory splits by a quan- 
tity of the order 0 (6) 

a($, a,*, E) = a,* + i (If 6)‘Ui (G a,*> 
i=l 

If L (uo*) = 0, then all odd coefficients al, us (I$),... vanish and the expansion 
takes place in whole powers of the parameter E. However, in this case additional con- 
ditions of existence of a periodic solution appear, and the splitting is of the order 0 (e), 
i. e. the perturbed solution is not unique in the accepted sense /l/. 
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Similarly, using the Poincari approach we can obtain sufficient conditions of existence 

of a periodic solution for the case of arbitrary multiplicity r. We establish that the ex- 

pansions can be carried out in various fractional powers of the parameter E, i.e. in the 

powers ai (r) ~-= ,llri, where ri is an integer. We also have the inequality 
k 

i=l 

where k: is the number of different expansions. 

Using (1.7), we now obtain the approximate value of the characteristic index i, for 

the already considered case of r = 2 and L (a,,*) $3 0, i.e. for n,* # 0 

h=$zl* (s)* 4 O(E2) 

From this it follows that for a sufficiently small E > 0 one of the branches of the solu- 
tion is stable, and the other is Liapunov unstable. The analysis of stability for the scalar 

variable a in the case when the root a, * is of arbitrary multiplicity r , is carried out 

in the analogous manner. 
2”. Next we consider a simple case of higher order motions. Let a be a vector 

and let the system (2.2) be satisfied identically, i. e. independently of a,. Then, using 

the proposed method for a, we obtain the following defining system of equations : 

If CI,,* is a simple real root of the system (2.7), i. e. det (aRs / &-,) * # 0, then for 

sufficiently small 8 the system (1.3) admits a unique periodic solution, equal to a,* 

when E = 0, which can be constmcted in the form of a series or by means of consecu- 

tive approximations in whole powers of the parameter. When a is a scalar, then the pe- 

riodic solution for the multiple real root a, * of (2.7) can be constructed in the manner 

analogous to that given above in Sect. lo. The corresponding computations are bulky 

and therefore omitted here. 
Investigation of the motions of an arbitrary order s (s = 1, 2,.. .) leads, in general, 

to the following defining system of equations : 

R,(ao) = R2(ao) = . . . = R,_l(a,)~ 0 (2.8) 
2n 

R,(ao)r lim@-s 
C-*0 s {f(at $1 E)/ Iota) + SF (a, $9 E)]) (111, = 0 

0 

which is assumed not to be identically satisfied with respect to a,. Here we take the 
last system for a and substitute into it an expression in the form of a series in whole po- 
wers of E, the coefficients of which are explicitly determined from the corresponding 
equations /l, 12/. This represents a simple case of higher order motions. If the system 
(2.8) admits a real root a,*, then simple and multiple solutions of higher order can be 
constructed in the manner analogous to that described above. 

We shall note that a more general problem of constructing a periodic solution is of 
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great interest when the system (2.8) is such that the rank of (d& / da,)* is less than 

n , the latter denoting the dimension of the vector a. Basically,, the problem can be 

solved with help of the Poincare’ method, in practice however the satisfactory construc- 
tion of a solution is, in general, met with the difficulty of making the choice of the ex- 

pansion. 

The Liapunov stability of the simple higher order solutions is determined by the sign 

of the real parts of the roots of the characterisitic equation obtained with the correspond- 

ing accuracy : det [(aR, / da,)* - IA] = 0. If a is a scalar, then the periodic tra- 

jectory is asymptotically stable, and the solution of the system (1.2) is orbitally stable 

provided that the inequality 

holds an E > 0 is sufficiency small. 

3. Investigation of the aslfrotrtlonrl motions. Let us consider self- 
rotations of a system with one degree of freedom, almost conservative and representing 

a particular case of (1.1) /5/ 
I” + Q (CC) = eq (z, x-t e) (3.1) 

Here z is the generalized coordinate, Z’ is the velocity. It is also assumed that the 
functions Q and p are periodic in x with a constant neriod of 2n, and that me “poten- 

tial energy” of the system 

U(s)={Q@VT 
0 

is aho a periodic function. In particular if Q (5) = Y' sin x (Y = const), we have 

a “pendulum” type system. 
We shall only consider the rotational motions of the system (3. l), i. e. the motions 

for which 5’ > cc > 0 or i < a ( 0. On the basis of the sign-definiteness of the 
phase trajectory x’ = Y (x, e) we can construct a rotational solution of rhe system 

(3.1) using the method developed in /5/. The period of such a motion can be found 
using quadratures 

(3.2) 

while the maximum and minimum values of the velocity are reached periodically for 

the values of x determined from equation Q (x) = eq (5, y (5, e), 6). 

To construct the required phase trajectory Y (x, e) we use the integral equation(3.3) 
together with the necessary and sufficient condition of periodic&y Y (3.4) 

$$-Llo=eSq(% Yq e)@+&++ (3.3) 

2x 0 

s 
(J@* ?A e)dz:=0 (3.4) 

b 

Here E, -= COI)FL is the unperturbed energy of the system, u = const, and u -= 0 
when E -: 0. In accordance with the Poincare merhod we have 
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cc m 

?J = ?J(1‘, EOt V, E) ::= 2 2 riVj7Jij (2, Ef)), (3.5) 
i=o j=O 

yoo Es yo = + r/z [E, - LJ (x)]“’ 

Substituting the expansion (3.5) into (3.3) and equating the coefficients of like powers 

of eiuj, we find the required functions yij (z, Es). Substituting the expression y (x, 

E,, u, E) into (3.4), we find the unknown parameter Et, and u z v (E). Whene-0 
we have u (0) = (J and the unperturbed energy must satisfy the equation 

R1 (Es) = f Q (xc1 Y” ( Ic, E,), 0) Gz 7. (2n, E,) = 0 (3.6) 
0 

The case Eo* being a simple real root of (3.6) satisfying the condition of rotation: 

E,* > max ZJ (z) on x E [0, an), was studied in /5/. Let us consider the critical 
cases. 

1”. Construction of the phase trajectories in the case of mul- 

tiple roots. Let f?,,* be an admissible double root of (3.6). Then the periodic solu- 

tion of (3.3) can be written in the form of series 

y = 5 6iyi (x, Eo*), V = i @Vi (3.7) 
i=O +=l 

Here 6 x v& and for the coefficients of the series we obtain, in particular, y, = 

u1 / y. where ur = -tf/b, i a, a -= (d2R1 / dEo2) * 
2x 

b, = 

0 

Here and henceforth the dependence of r on the known E,* is not shown. Let us assume 
that b, / a > 0. Then all further coefficients Vi (i > 2) are determined from the lin- 
ear equations of the form UU~ bi, where bi are known constants. For example, 

b2= ~{(~)oY~'['j;(~)oY;'dlp-~(x)_~y~2)y;1J+ 
0 6 

(~)o(r@)-~Yy02)~;2 + (&)oy;l}dr 

The coefficients for i > 2 are computed in a similar manner. Thus if E,* is adouble 

root and 6, / a > 0 , the phase trajectory splits by a quantity of the order of ?j 
CO 

i=l 

and we have no uniqueness in the accepted sense /I./. 
If b, (E,*) = 0, then all yaj-r (x) E 0 and uaj-r = 0 (j = 1, 2,. . .). Then, 

as in Sect. 2, the expansion is carried out in whole powers of E. The coefficient u2 in 
the expansion (3.7) is given by the following quadratic equation : 

av22 + bu2 + c = 0, b = 2 (db, / dEo)* 
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C= ~{(~)oy,LT(~)+~(~)or2(~)y;a+~(~)o+ 
0 

X 
hJ ( H it- G-0 2 

r (z) rQ - y;l ~((~)oY;l’w+ (g),)g}dz 
0 

The above equation has a solution when b2 - hat > 0 . In the case of strict inequal- 
ity the equations for determining the further coefficients Usj (i > 2) will be linear 

and of the form ar:,j = Cj. Further steps can be carried out in the analogous manner. 

The splitting in the case under co~id~ati~ is of magnitude of the order of fiZ = e, 

and again there is no uniqueness. 
Let us briefly consider the case of a triple root, and explain the conditions under which 

the expansions have the form of (3.7) where 6 s i,‘e. Substituting (3.7) and equating 

the coefficients we obtain, in particular, yr = z+ i y,,, where z+ is a real root of the 

equation 6d ~~3 + b, = 0, where d = (d3R1 / &?,,a) ** For b, (%=,*) # 0 the 

further coefficients are determined from linear equations of the form dvi + gi = 0 

(r > 2), where gi are found consecutively, e. g. 

The functions y, (3) are determined from (3.3), one after the other. In particular 

we have 
yz = (us - yr2 / 2) y& Y, = [r W + 7,93 - w21 ~2 

When bt* = 0, the expansions can be written in whole powers of E or of fi The 

basic conclusion drawn from this investigation is, that multiple roots may cause splitting 

of the phase trajectories and solutions. 

2” * Investigation of higher order selfrotations. Assume that we 

have the critical case in which the defining equation (3.6) is satisfied identically, i.e. 

independently of E,. Then, using the Poincark method we obtain from the expressions 

(3.5) and Eqs. (3.3) and (3.4) the following equation for &‘, : 

If Ea” is a simple real root satisfying the rotation condition, then the periodic phase 

trajectory can be uniquely determined in the form of a series in whole powers of E. In 

fact, since #RI / dEok := 0 for any &a, we obtain equations which are linear in the 

unknown ui (i -1, 2, . . .); and these unknowns can be determined, just as yi, conse- 

cutively from the equations aui + pi = 0, r Z= (dRs I dEJ* =#= 0 . In particular 
we have 
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p1= ~{(~)o[-Y:S((a,o~lr~~, +(~),,d~+~y;“re(x)]-l- 
0 0 

If Rr 5 0 and R, z 0 but Rs (Ea) = pi (Es) + 0, then the problem of existence 

and uniqueness of the phase trajectory sought depends on the properties of the roots of 

the equation fit (Es) = 0. We treat this case just as we did the previous one. Gene- 

rally speaking, a study of the phase trajectories and motions of arbinary degree s leads 

to a system of defining equations of the type (2.8) where 

2x 

' R, (Ed = lim G-J 
C--O s 

q (x, y, e) ax = o 
0 

and this equation is understood to have the meaning described in Sect. 2. 

If E,* is a multiple root, then the multiple higher order selfrotations can be investi- 
gated in the same manner as the case of multiple roots for the first order selfrotations. 

The Liapunov stability of the phase trajectories at e > 0 is sufficiently small and is 

defined by the inequality 
2n aq 

s 
=a-?:<0 

0 

For example, in the case of the simple higher order selfrotations the sufficient condition 

of orbital stability is, that the inequality (dR, / dEo)* < 0 holds. In the case of mul- 

tiple roots the stabiiity is investigated exactly as in Sect.3. 

In conclusion we note that, using a known phase trajectory, we can employ the inves- 
tigated approximations or expansion into series in powers of 6 , construct the rotational 

solution of (3. l), compute the period (3.2) and other parameters of the steady motion 

/5/. 
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The present paper supplements and formulates in a more rigorous form, the sta- 

tement of the problem on stability of processes over a specified time interval, 

which was given in /l, 2/. The refinement concerns the case in which the spe- 
cified time interval is finite, and we find that an imposition of stronger con- 

straints on the region of limiting deviations becomes necessary. As far as the 

character of the constraints imposed on the perturbations of me parameters of 
the process is concerned, the proposed formulation and the initial formulation 

are both related to /3/. We use the fact that a linear differential system can be 
transformed into a diagonal one, as the basis for establishing the necessary and 

sufficient conditions of stability of a linear process, and for obtaining certain 

conditions of stability and instability of a nonlinear process in the linear appro- 

ximation. We show how transformation of a linear system to a “nearly” diago- 

nal system can be utilized for the same purpose. 

l.Choica of the region of limiting deviationc.we introduce the region 

of limiting deviations using the class K‘$ of ( n X n)-matrices G (t) = (GIG,. . - 
G,) over the field of complex numbers, satisfying the following conditions on the inter- 

val A = ito, T), where T is a number greater than t,,, or 00 : det G (t) # 0 and 
the Hermitian norm of the columns Gi (t) (j =I, 2,. . ., n) coincides with a positive 

function 0 (t), i.e. 11 Gj (t) 11 = 1/ (Gj, Gj) = o (t). 
The region of limiting deviations is defined as follows: 


